DAG: crawlers_hourly ROOT: Start

schedule: @hourly


crawlers_hourly

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Code that goes along with the Airflow located at:
http://airflow.readthedocs.org/en/latest/tutorial.html
"""
from airflow import DAG
from airflow.operators.docker_operator import DockerOperator
from airflow.operators.dummy_operator import DummyOperator
from datetime import datetime, timedelta
# from sites import ALL_CRAWLERS
ALL_CRAWLERS = {
    'indeed|daily': ['general', 'SDR', 'accounting', 'blockchain','reactjs',"qa","cctv"],
    'dice|daily': ['general', 'SDR', 'accounting', 'blockchain', 'reactjs',"qa","cctv"],
#    'monster|daily': ['general', 'SDR', 'accounting', 'blockchain', 'reactjs',"qa","cctv"],
    'glassdoor|daily': ['general', 'SDR', 'accounting', 'blockchain','reactjs',"cctv"],
#    'monster_ch|daily': ['general', 'SDR', 'accounting', 'blockchain','reactjs',"cctv"],
    'dejobs|daily': ['general'],
    'seek_au|daily': ['general', 'machine_learning',"cctv"],
    'careerbuilder|daily': ['general'],
#    'datajobs|monthly': ['general', 'machine_learning',"cctv"],
    'whoishiring|daily': ['general','cctv'],
#    'cryptojobslist|monthly': ['general'],
    'crypto|daily': ['general'],
    'linkedin|hourly': ['general','cctv'],
#    'stackoverflow|mothly': ['general', 'SDR', 'accounting', 'blockchain','reactjs','cctv'],
    'simplyhired|hourly':['general'],
#    'joblift|weekly':['general'],
#    'adzuna|weekly':['general'],
#    'powertofly|weekly':['general'],
    'snagajobs|daily':[],
    'ladders|daily':[],
    'flexjobs|daily':[],
    'linkup|hourly':[],
#    'naukri|weekly':[],
    'polemployee|daily':[],
    'indeed_china|daily':[],
#    'ranstad|weekly':[],
#    'eurojobs|monthly':[],
#    'ohiomonster|monthly':[],
#    'nurse|weekly':[],
#    'veterans|weekly':[],
#    'bankcanada|weekly':[],
#    'govukjobs|weekly':[],
#    'chinacities|weekly':[],
    'reeduk|daily':[],
#    'sgjobsdb|weekly':[],
#    'usagov|weekly':[],
#    'govermentjobs|weekly':[],
    'indeed_ar|daily':[],
    'indeed_au|daily':[],
    'indeed_brasil|daily':[],
    'indeed_canada|daily':[],
    'indeed_eg|daily':[],
    'indeed_es|daily':[],
    'indeed_fi|daily':[],
    'indeed_fr|daily':[],
    'indeed_gr|daily':[],
    'indeed_ie|daily':[],
    'indeed_in|daily':[],
    'indeed_it|daily':[],
    'indeed_korea|daily':[],
    'indeed_malaysia|daily':[],
    'indeed_mx|daily':[],
    'indeed_nl|daily':[],
    'indeed_pk|daily':[],
    'indeed_pl|daily':[],
    'indeed_pt|daily':[],
    'indeed_ro|daily':[],
    'indeed_ru|daily':[],
    'indeed_sa|daily':[],
    'indeed_se|daily':[],
    'indeed_tw|daily':[],
    'indeed_ua|daily':[],
    'indeed_uk|daily':[],
    'optioncar|daily':[],
    'opcionempleo|daily':[],
#    'jobsinnetwork|weekly':[],
#    'computrabajo|weekly':[],
#    'canadajobs|monthly':[],
#    'jobillico|weekly':[],
    'bcjobs|hourly':[],
#    'jora|monthly':[],
#    'workbc|weekly':[],
#    'trabajosmx|weekly':[],
#    'joboolo|weekly':[],
#    'bayt|weekly':[],
#    'bestjobs|weekly':[],
#    'careercast|weekly':[],
#    'cvlib|weekly':[],
#    'directemploi|weekly':[],
#    'disabled|weekly':[],
#    'eurabota|weekly':[],
#    'findojobs|weekly':[],
#    'jobsonlinenl|weekly':[],
#    'livecareer|weekly':[],
#    'meteojob|weekly':[],
#    'postjobsfree|weekly':[],
#    'sercanto|weekly':[],
#    'timesjobs|weekly':[],
#    'xing|weekly':[],
#    'avito|weekly':[],
#    'juju|weekly':[],
#    'jobbird|weekly':[],

}

default_args = {
    "owner": "airflow",
    "start_date": datetime(2020, 12, 17),
    "email": ["airflow@airflow.com"],
    "email_on_failure": False,
    "email_on_retry": False,
    "retries": 2,
    "depends_on_past": True,
    "retry_delay": timedelta(minutes=30),
    'pool': 'general',
}

dag = DAG("crawlers", default_args=default_args,
          schedule_interval="@daily", catchup=False)

#default_args_weekly = dict(default_args)
default_args_hourly = dict(default_args)
#default_args_monthly = dict(default_args)

default_args['start_date'] = datetime(2020, 12, 17)
default_args_hourly['start_date'] = datetime(2020, 12, 17)
#default_args_weekly['start_date'] = datetime(2020, 12, 15)
#default_args_monthly['start_date'] = datetime(2020,12,1)

dag_hourly = DAG("crawlers_hourly", default_args=default_args_hourly,
          schedule_interval="@hourly", catchup=False)

#dag_weekly = DAG("crawlers_weekly", default_args=default_args_weekly,
#          schedule_interval="@weekly", catchup=False)
# t1, t2 and t3 are examples of tasks created by instantiating operators
#dag_monthly = DAG('crawlers_monthly',default_args=default_args_monthly,schedule_interval="@monthly",catchup=False)


def load_sites(period):
    """
    period loader
    """
    def return_site_scopes():
        new_dict = {}
        for _site, scopes in ALL_CRAWLERS.items():
            if _site.split('|')[-1].strip() == period:
                new_dict[_site.split('|')[0]] = scopes
        return new_dict
    return return_site_scopes


daily_site_loader = load_sites("daily")
hourly_site_loader = load_sites("hourly")
#weekly_site_loader = load_sites("weekly")
#monthly_site_loader = load_sites("monthly")
dags_mapping = [
    (dag, daily_site_loader()),
    (dag_hourly, hourly_site_loader()),
 #   (dag_weekly, weekly_site_loader()),
 #   (dag_monthly, monthly_site_loader())
]

for _dag, _crawl in dags_mapping:
    site_crawls = []
    wait_task = DummyOperator(task_id="Wait", dag=_dag)
    start_task = DummyOperator(task_id="Start", dag=_dag)
    end_task = DummyOperator(task_id="End", dag=_dag)
    for site, scopes in _crawl.items():
        scope_tasks = []
        task_id = "-".join([site, "crawl"])
        command = 'python -m scrapy crawl {}'.format(site)
        task_to_run = DockerOperator(
            task_id=task_id,
            image='oc:airflow',
            command=command,
            docker_url='unix://var/run/docker.sock',
            network_mode='host',
            dag=_dag
        )
        site_crawls.append(task_to_run)
    start_task >> site_crawls >> wait_task >> end_task